Skip to main content

The company’s work has already garnered attention in the defense market

The company’s work has already garnered attention in the defense market, which requires very ruggedized solutions. Moore notes that Gore’s product meets the Arinc 802-3 standard, and recently qualified to “EN4641 Part 301 and that is basically for the Eurofighter in Europe … so we have recently qualified for that and a lot of these have some very serious tests that mimic harsh environments.”
To streamline fiber terminations, Gore boasts a strategic partnership with an Ohio-based specialist named Cotsworks, which works with “a lot with the major players in the field and have some very close relationships in the aerospace industry”, says Moore. Cotsworks has come up with a solution to splice cables in under five minutes.
On the commercial side, Gore is working with “basically all the major relevant players, OEMs, system integrators on our fiber optic cabling and guiding people from the transition from copper to fiber. People are very hesitant still.”
As mentioned, a certain amount of fiber has been in play for years in the inflight entertainment world. One now-defunct company, called Lumexis, even extended fiber all the way to the IFE screen. “I thought their technology was really good. It was smart and I think it might have been just a little bit too early. And I think now we are starting to see people really get into the realms of speeds that require fiber optic cabling,” says Moore.
Stressing that his opinion on this matter is “just total speculation”, he posits that fiber-to-the-screen might make a comeback, particularly as industry graduates to 4K IFE content. “I wouldn’t be surprised if there was ultimately a fiber-to-the-seat solution again. To me that just seems to make sense to minimize how much space you are taking up within the seat. And there’s also a lot of concern about EMI immunity as well [for IFE].”

Comments

Popular posts from this blog

One strand of optical fiber is about the diameter of a human hair

As the saying goes, one strand of optical fiber is about the diameter of a human hair.CORNING It’s an amazing idea. Now, copper wires—sometimes called “twisted pair” because they are made of pairs of strands of copper twisted around one another—also carry data and telephone signals to homes and farms in much of rural America. But because of the characteristics of copper as a transmission medium, signals that travel over copper doesn’t have the extraordinary frequency range that light signals do, are subject to interference from other signals, and in general, degrade very quickly over more than a short distance. That’s why if you have a copper-wire DSL (digital subscriber line) subscription, you have to be very close to the phone company’s “central office” to get a download signal into your house. A DSL house is connected to a copper wire, not a fiber-optic cable. fiber optic installer salary Not only can light travel over fiber for hundreds of miles with little attenuation (im...

Journal of ISSN Industrial Engineering Systems

Fiber optic structureI (Source: Samuel, 1988)  Core  dan  cladding  temade of silica material, glass,  orPlastic ber bertin qualityggi and free water.  Core   has an index blarger scale of cladding (n1 > n2) to the limit critical, so  it's possiblekan  occurrence of  refractionin  total  (total  internal  reflection ).  Withthereby the light will  always bepropagate in the core  to the ends  of the fibers.  Coating   ( jacket ) worksas the core protector and   cladding of t     ekanan physical outside, made of very plastic material quality  (Zanger,  1991,  Thomas,  1995,  Samuel,1988).   Optical fibergenerally classified medoggy 3 types (Figure 4) (Samuel, 1988): 1. Multimode Step Index ,  with finger-jari core 25 – 60 µm, cladding 50 – 150 µm. 2. Multimode Graded Index ,  with fingers core 10 – 35 µm,...

There are two methods that are used to measure the loss

There are two methods that are used to measure the loss by insertion with a light source and power meter, a "connection cable test", also called "single-end loss", according to the TIA FOTP-171 standard, and a "cable network test installed" or "loss of two ends", according to the TIA OFSTP-14 (multimode) and OFSTP-7 (single mode) standard. The difference between the two tests is that the single loss test end uses only a launch cable and tests only the connector attached to the launch cable plus the fiber and any other component in the cable. The single-end test is mainly used to test connection cables or short cables since you can test each connector individually. The two-end loss check uses a launch cable and a receive cable attached to the meter and measures the loss of the connectors at both ends of the cable under test. The single-end check is generally used in connection cables to be able to test the connectors at each end of an indi...